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SUMMARY

Several statistical problems important to submarine ASW
exercise design and analysis were investigated under the
research contract for updating the current SUBMARINE ANALYSIS
NOTEBOOK. The application (but not the development and
theory) of the research will be contained in the revised
edition of the Notebook.

The underlying theory of certain results of this research
needs to be published separately, since it contains new
techniques developed under this contract or includes the
modification and/or application of methodologies not avail-
able in standard textbooks. This paper contains this theory.

The results discussed herein include:

. A method for calculating symmetric confidence inter-
vals for search rate and mean time-to-detection for
the active and passive area search missions.

. A method for calculating approximate confidence inter-
vals on cumulative detection probability as a function
of range for the general case containing "turn-arounds"
(CPAs) and "late-starters."

. The application (and modification) of various techniques
for calculating approximate confidence intervals on
Mission Measures of Effectiveness that are in the form
of products of proportions.

. A discussion of the potential bias due to "late-starters"
in the development of cumulative detection probability
as a function of range. Recommendations for eliminating
(or at least minimizing) this bias are included in this
report.
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I. INTRODUCTION

Analysis & Technology, Inc. has been conducting a

research study on statistical methods for the design and
* testing of submarine exercise data. This research has
been sponsnred by NAVAL ANALYSIS PROGRAMS (Code 462) of the
OFFICE OF NAVAL RESEARCH under Contract Number N00014-72-C-0238.

The purpose of this study is to provide a basis for
improvement in the design, analysis, and evaluation of
submarine exercises and the exercise results through the
development and application of statistical techniques.

The results of this study are to be included in a revised
edition of the SUBMARINE ANALYSIS NOTEBOOK (reference (1)).
The notebook will contain instructions, procedures,

standardized tests, and analytical techniques to evaluate
in advarce the data plans and requirements for proposed
submarine exercises, and a description of the post-exercise
statistical testing and general analysis necessary for the
evaluation of the recorded data.

Although the SUBMARINE ANALYSIS NOTEBOOK will be the
final product of this research and will utilize all of the

results of this study, it is intended to be a convenient
user's guide and not a compendium of statistics. Its
purpose is to provide sufficient theory to allow the user
to empioy the statistical techniques correctly and to
understand the implications of the tests.. Therefore,
certain theory and rationale behind the various statistical
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tests will not be included in the Notebook. Instead,
the user is referred to the appropriate textbook(s) and
published papers for a detailed explanation of the
theory.

Certain results of the research conducted under this
contract merit separate publication since they require
new or non-standard techniques. These results are pre-
sented in this methodology paper. The treatment of the
techniques discussed herein is analytical rather than

computational.

Chapter II of this report presents a method for
calculating confidence intervals for search rate and
mean time-to-detection for the active and passive area
search scenarios. This method has application in both
the design phase of an exercise and in the post-excrcise
analysis phase. 1In the planning stages, the test designer
can use it to estimate sample size requirements for a
desired confidence interval around the sample measure,
or conversely, he can estimate the confidence interval
he can expect to obtain from a predetermined sample
size. 1In the post-exercise analysis phase, the analyst
can apply the technique to calculate exact confidence
intervals around the sample measure. of search rate and
mean time-to-detection.

In Chapter III, a methodology is given for obtaining
approximate confidence intervals on cumulative detection
probability (CDP) as a function of rauge. Consider-

able research was devoted to this problem before a
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simple, practical method could be developed. The com-
plexity of the problem is due to the inclusion of "turn-
arounds" or CPAs and "late starters" in the construction
of the estimate of the CDP curve.

Chapter IV discusses various methods of establishing
approximate confidence intervals on products of proportions
with respect to their usefulness in ASW applications.

The method due to Madansky (reference (2)) is recommended
for inclusion in the SUBMARINE ANALYSIS ﬁOTEBOOK since
it appears to be most applicable to the type of exercise

data used for obtaining estimates of Measures of Effective-

ness (MOEs) for submarine missions.

The research conducted on cumulative detection prob-
ability (CDP) as a function of range revealed that
the standard estimate of this function is susceptible to
bias under certain conditions. The results of an in-
vestigation of this potential bias are presented in
Chapter V.
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II. SYMMETRIC CONFIDENCE INTERVALS FOR SEARCH RATIE. AND MEAN
TIME~TO-DETECTION IFOR THE ACTIVE AND PASSIVE AREA

SEARCH SCENARIOS

Discussion

A primary measure of interest for the area search
mission is search rate as calculated from exercise data.
©sarch rate is defined as the rate at which the ASW

unit searches its area, expressed in area per unit time
(for example, square nautical miles per hour). A
related measure is mean time-to-detection, which is

inversely proportional to search rate. These measures

are applicable to both active and passive area search

scenarios and are discussed in detail in the current

SUBMARINE ANALYSIS NOTEBOOK (reference (1)). !

In planning an area search exercise, the test designer
needs to investigate sample size requirements for obtain-
ing statistically valid estimates of search rate and
mean time-to-detection. This is true whether -or not he
has control over the sample sise. If he does have control,
then he can decide how many runs to schedule in order to
obtain a desired confidence interval around the exercise
estimates of these measures. If he does not have control
over the sample size (i.e., the sample size has been
fixed prior to the design of the exercise), then he can
estimate, before the exercise, the anticipated confidence
interval around the sample cstimates of search rate and
mean time-to-detection. 1In either case, the designer has
a tool for assessing the statistical validity of the

exercise results, prior to the conduct of the exercise.
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After the exercise, when the data are used to calculate
estimates of search rate and mean time-to-detection, the
exercise analyst can calculate confidence intervals around
his estimates, as a guide to their probable accuracy.

A method for determining exact symmetric confidence
intervals on these measures has been derived from Koopman's
(reference (3)) formulation of the area search problem,
and is presented in this chapter.

The technique provides a functional relationship

2 between confidence level, the width of the confidence
interval as a percent of the sample estimate of the
measures (search rate or mean time-to-detection), and
the number of detections. It is the tool the analyst
needs to make the pre~exercise decisions and to do the

post-exercise analysis.

Sihce sample size is expressed in terms of detections
and not in terms of exercise runs, the technique may
require some prediction in the pre-exercise phase. Unless
the test designer is able to spacify that a test continue
until a required number of detections has occurred, he

needs a predicted value of search rate or mean time-to-
detection in order to convert the required number oZ

detections to the required number of runs.
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Development of Confidence Intervals for Search Rate

The cumulative detection probability as a function of
time for a submarine conducting an area scarch is presented
in the SUBMARINE ANALYSIS NOTEBOOK (reference (1)) as:

CDP =1 ~ exp (-At) (IT.1)
where:
t
e
t = sample mean time-to-detection (t = %0,
D = numker of targets detected by the searcher,

t, = the length of the ith time interval of target

exposure, ordered so that t; > tio1e

N = total number of time intervals, ti.

é Further, the quantity search rate (SR) is defined as:

SR = —%&——— = AX = é (area per unit time) (T1.2)
t
Pty
i=l
where:
A = size of the search area in square nautical
miles.




The quantity t needs to be rewritten in a form which

is consistent with the usual definition of a mean; i.e.,

Referring to Dr. B. 0. Koopman's Search and Screening
(reference (3)), the probability Adt of detecting in a
short time interval of length dt is independent of time;

in fact, the probability of a detection occurring in any
short time interval of length dt is constant. Thus, it
is pessible to add a length of time in which no detections
occurred to zry other time interval, and especially to a

time interval which ended in a detection.

For example, let us consider an area search exercise
which produced the following data. The D* stand for
detections and the ND stand for no detections,

D*
D*

ND
ND

D*

ND

D*

W S Ul W N

Time (hours)




where: tl = 6 hours, t4 = 2 hours, t7 = 4 hours,
t2 = 2.5 hours, t5 = 10.5 hours, t8 = 6 hours,
t3 = 8 hours, t6 =12 hours, D = 5.

Runs number 1, 2, 5, 7, and 8 ended in detection, while the
remaining three runs ended before the target was detected.

In this case, the mean time-to-detection (E) can be calcu-

lated using equation (II.l),

However, since the probability of detection in a small
time interval is constant,; the data may be regrouped so
that every time interval ends in a detection. A possible
rearrangement of the data in this example .s presented
below:

o
)
+
w
[w)

[&F]
o>
t
v

4] 6+7 D
5 8 D
0 2 4 6 8 10 12 14 16

Time (hours)

where: ti = 6 honrs,
t§ = 10.5 hours,
t§ = 12.5 hours,
tz = 16 hours,
tg = 6 hours.,




Assume that t¥, tﬁl"'tﬁ form a random sample from a
population whose probability density function is

. -
fFig) =a* e Mt 0 <t <o

with the cumulative distribution function

-) %
F(t)=l—elt,0<t<w.

This follows from the prcecmise that A* is assumed to be
unknown, A* > 0, and is to be estimated by A = 1/t.

Define the random variable
X = 20*t*,

Clearly, t* = X/2A*, dt*/dX = 1/2A* and by the usual change
of variable technique (reference (4)), the probability
density function of X is

g(x) = (1/2)e /X,

0 < X < o,
the chi-square density function with 2 degrees of freedom.
The values Xi = ZR*ti (i=1,...,D) form a random sample

from this chi-square density function. Thus, by the
D
reproductive property of the chi-square, I Xi = zxi =
i=1
2A*Zt; is distributed as a chi-square random variable

with 2D degrees of freedom. Let xé (2D) and le-B (2D) be

respzctively [100 o] and [100 (1-B)] percentage points of
the chi-square with 2D degrees of freedom. We have

(II.3)

(I1.4)

(I1.5)

(IT.6)




P(x;(zn) < DXy 5-Xi-3(2D)) = 1-(a+B) = ¥.
But zxi = 2A*Et;. Hence
P(x5(2D) < 2A*It} < xj_g(2D)) = 1-(a+B) =y
or equivalently
p(x;(zo)/zzt; < A¥ < xi_B(ZD)/ZEt;‘_) = 1-(0+B) = Y.
The endpoints of the interval in equation (II.9) give a

confidence interval on A * with confidence coefficient y.
Continuing, we can use the well known results

N D
SR* = AA* and SR = DA/Zt. = DA/Lt*
1t 1t

where SR* = true (but unknown) search rate and SR denotes

the sample estimate of the search rate. Substituting into
(II.9) we have

SRy > (2D) . Sin—e(ZD)>
P sp—— < SR¥ ¢ ——S——J= 1-(a+B) = v,

yielding a v = [(1-(a+B)) 1002] confidence interval on
SR*. The formulas

) SRxé(2D)

L, =

SRx? ,(2D)
- 1-8
o« = "2p — andU - T 20

1-8 2D

10

(IT.7)

(11.8)

(II.9)

(I1.10)

(I1.11)

(II.12)
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yield asymmetrical confidence intervals (about SR*) if
¢ = B. However, there is nothing inherently desirable
about asymmetrical confidence limits. In fact, in pre-
exercise design (i.e., determination of sample sizes or
number of detections) symmetrical intervals are more
desirable. Furthermore, in some cases the width of the
asymmetric intervals are wider than the corresponding
symmetrical ones. To obtain the symmetrical confidence
intervals, find o and B such that

SRy (2D) ]
—y—— = (L=A) SR = SR=A(SR) (I1.13)

and

sti_B(zv) ,
—F5—— = (L + A) SR = SR + A(SR), (I1.14)

where A is the percent accuracy, 0 < A < 1.
That is

X5 (2D) = 2D (1-4) (I1.15)

and

Xj_g(2D) = 2D(1+4). (II.16)

11
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Figure II.l, appearing at the end of this chapter,
presents curves giving the relationship between the
number of detections (D) and the percent accuracy of
the sample search rate (A), for four confidence levels (y);
namely y = 80%, 90%, 95% and 99%. The application of
these curves is illustrated in the examples presented
in the last section of this chapter.

Development of Confidence Intervals for Mean Time-to-Detection

The above techniques can be adjusted to yield confidence
intervals on 1/A*, the "true" but unknown mean time-to-
detection. From (II.9) we have

p(_20E <l < _2DE_\= 1-(a+B) (I1.17)
X1.g (2D) A* T xz (D)
_ N D
where t = £ t./D= I t¥/D. Thus
i=1 * i=1 * '
— e 2
Ly_g = 2Dt/x]_g(2D) (II.18)
and
— T 2
u, = 2pt/x2(2D) (II.19)

yield asymmetrical confidence intervals on 1/A*. To
obtair symmetrical confidence intervals on 1/\A*, set L =
(1-A)t and U = (1+A)t. Solving these equations, we have

12
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Xi-g (2D). = 2D/ (1-4), (II.20)
X2 (2D) = 2D/ (1+4). (II.21)

Again, by fixing D, one can adjust A, o and B, subject to
Yy = [1-(a+B)] = 99% (or 95%, 90%, 80%), until equations
(I.20) and (II.21) are satisfied.

Figure II.2 contains graphs giving the.relationship
between the number of detections (D), and the percent
accuracy of the sample mean time-to-detection (A), for
four values of vy = [1=(a+B)], namely y = 80%, 90%, 95%
and 99%.

Application

The following examples illustrate the use of Figures
E II.1 and II.2 in pre and post-exercise analysis.

Example 1 ~ (Pre-Exercise)

An active area search exercise is being designed
to measure active search rate. The test designer
- wishes to estimate the number of detections needed
: j to be 90% confident that a +20% interval around the
sample search rate contains the true, but unknown,

value of search rate.

In this case, the designer will not attempt
to predict the value of the sample search rate since
the effects of target forestalling (i.e., target

13
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counterdetecting first and then avoiding detection)
may be significant. However, his estimate of the
required sample size must be in terms of detections
and not in terms of exercise runs.

For this problem, the following values of
confidence level and percent accuracy are used:

Confidence Level = 90%
Percent Accuracy = 20%
Confidence Limit = SR +.25R

Using Figure II.l, the required number of
detections is 65.

Example 2 - (Pre-Exercise)

In designing a passive area search exercise,
the test designer learns that the proposed exercise
will consist of 60 runs, each 24 hours long. He
wishes to estimate the confidence intervals around
the sample mean time-to-detection, prior to the
conduct of the exercise.

From prediction and/or prior passive area
search exercises, the test designer estimates that
the cumulative detection prolrability at the end
of each run is .87. Thus, the estimated number of
detections at the end of 60 runs is approximately
52 (i.e., .87 x 60).

The predicted, pre-exercise value of mean time-
to-detection is approximately 28 hours (t = total
search time/D = 27.69).

14
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Using Figure II.2, he obtains the following
estimates of three confidence intervals around
the sample mean time~to-detection based on D = 52
and t = 27.69:
i Confidence Interval
Confidence Level Percent Accuracy, 4 (E-AE, E+AL)
80% .18 (22.71, 32.67)
90% .23 (21.40, 33.98)
95% .28 (19.94, 35.44)

Example 3 - (Post-Exercise)

The'analyst wishes to compute 80%, 90%, 92% and
99% confidence intervals around the exercise (sample)
value of search rate. The sample search rate was
calculated to be 23 square nautical miles per day
based on 45 detections.

Using Figure II.1, he obtains the following values
of the. exact symmetric confidence intervals around
the exercise search rate.

Confidence Interval
Confidence Level Percent Accuracy, A (SR-ASR, SR+ASR)

5 | 80% .19 (18.63, 27.37)
903 .24 (17.48, 28.52
958 .29 (16.33, 29.67)
993 .38 (14.26, 31.74)
15




PP P YR T

[ ITETS FOEPY hnatg Ry Mipd be
P I [y P

TE IS ey

For D detections, the

PERCENT ACCURACY , A

*

95% and 99% confidence intervals on true
limits of the interval are SR + ASR, where

D, and percent accuracy, A, for 80%, 90%,
search rate, SR¥*.

SR = sample scarch rate.
16
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IXI. APPROXIMATE CONFIDENCE INTERVALS FFOR CUMULATIVE
DETECTION PROBABILITY CHURVES

Discussion

Cumulative detection probkability as a function of
range (CDP = f(R)) is an important performance measure
of a sonar system. As developed from exercise data, it
provides Fhe analyst with an estimate of the system’s
detection performance in terms of the probability of
detecting a target by the time the target has closed to
within a specified range.

The development of CDP = f(R) is simple if each
target closed until it was detected or until it reached
(approximately) zero range from the detecting unit. In
this case, when N trials have been made; the cumulative
detection probability as a function of range can bhe
determined as:

Pr
N

CDP (R)

where:

D, = Number of detections made at range R
or greater.

However, in actual exercises, the target does not

continue to close indefinitely until it is detected.
Even if it were required to do so, the resultant CDP

18




curve would not be representative of real targets that
are free to maneuver. ‘Thus, a realistic target may reach
a closest point of approach (CPA) after which it begins
opening range. In many cases, such a target may never
be detected during the run; and further, the observed
CPA of a run may be at a lesser range than several of

the detection ranges of other runs. These undetected
targets are called CPAs or turn-—arounds.

In addition, a typical exercise may include targets
that were "late-starters". Thes2 late-starters became
detection opportunities at a lesser range than some ox

Tiany of the detection ranges of other targets.

A detailed discussion of the development of cumulative
detection probability as a function of range for the
general case involving CPAs and late-starters is presented
in the eurrent SUBMARINE ANALYSIS N"TEBOOK (reference (1)).
While several forms of the CDP équationiare presented in
the Notebook, the follcwing equation is the most useful
for our development of confidence intervals:

whexre:

CDP. = The cumulative detection probability
at range i.

gj = The probability of no-detection in the
j;h range band, on a target which was
.th

not detected before entering the j
range band.

19




Methodoloay

Several techniques (e.g., references (5) and (6)) have
been proposed in attempys to solve, ac least approximately,
the problem of obtaining confidence intervals on cumulative
detection probability (CDP) as a function of range. In the
simple case with no CPAs or late-starters, confidence limits

can be calculated using standard techniques since the function

CDP {R) = I]\)I—R'
is, at each range, an observation on a binomial populatiomn.
Specifically, there is a probability (equal to CDP(R)) that
a closing target will be detected at a range greater than
or equal to R. The observed fraction represents D
in N trials.

R successes

In contrast, consider the more complicated case where
CPAs and late-starters are included in the data. Suppose
a detection occurs at some range R* that is less than
the longest detection range, and less than at least one
CPA range or late-starter starting range. 1t is not
possible to characterize CDP(R*) as D successes in N
trials since not all the runs that were valid trials at
the starting range are still valid trials at R* (due to
CPA's), and not all the runs that are valid trials at
R* have been valid trials over the entire interval from
the starting range to R*¥ (due to late-starters). In
short, although it is still possible to count th=z
successes, it is no longer possible to count the number
of trials; and hence, the binomial confidence interval
technique is not directly applicable.

20




auhae o WD

i s

The method described here is designed to choose a
suitable number to use as this unknown number o trials

so that approximate confidence limits can be calculated

using the binomial distributfion. The choice is made in

such a way that the resulting confidence intervals re-
flect, in a reasonable way, the actval sample size.

Consider the following notation:

1. Ri = range of an ith detection, oxdered so that

Riv1 SRy SRy,
2. M, = number of targets available at a range just
less than range R, .

As referred to in the Discussion, the eguation for CDP

given in the SUBMARINE ANALYSIS NOTEBOOK (reference (1))
is:

1
CDPi =1 - 2

Since the estimator for each g. can be written in the
M.
form gj = ?le_' the CDPi can be rewritten in the notation
J

of this report.

=

JLl = cumulative detection probability
=1 73"
at range Ri'

= e

3. Cpp, =1 -
i

=

21
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= estimated sample size necessary for produc-

4. N; = pp;
1

irg i detections when the cumulative detection prob-
ability is CDP; .

* = i w oy i s fvi *
5. Ri an arbitrary range satisfying Ri+l < RY < R,.

6. Az = number of "late~starters" with starting range
less than Ri but greater than or equal to Rf'

7. Ci = number of "turn arounds" where the closest point
of approach (CPA) is less than R but greater than or
equal to R;.

8. ki =c} - A; = net loss in number of targets

(opportunities) between range R; and R;.

9. [Ni] = largest integer 2ess than or equal to

Ni = l/CDPi.

Given a sample size Ni and a value of CDPi for a

range R., we could calculate the expected number of

detections at or before R, by using the following eguation:
1= CDPi . Ni

In this case, since i and CDPi are known, we can use the

same equation to estimate the "effective sample size"
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There are two cases which arise in placing confidence
intervals on the value df CDPi at range Ri. In case 1,
Ny is an integer. Here CDP, = i/Ni can be treated as i
detections, at ranges greater than or equal to Ri, out
of N, (estimated) opportunities. Hence, using the
tables and charts for "exact" confidence intervals on
a single proportion (see, for example, reference (1))
one can obtain an approximate Y% confidence interval on
CDPi, where L and Ui denote, respectively, the lower
and upper limits of the interval.

In case 2, N; is not an integer. Here
i/(INg] + 1) < cpPy < i/1IN;].

Using the tables and charts for confidence intervals on

a single proportion, we can obtain an approximate, but
probably conservative, y% confidence interval on CDPi.
For the lower limit, Li, take the lower limit of a v%
confidence interval on the proportion i/([Ni] + 1), i.e.,
treat Chp, as 1 detections out of [Ni] + 1 opportunities.
For the upper limit, u;., take the upper limit of a v%
confidence interval on the proportion i/[Ni], i.e., treat
CDPi as i detections out of [Ni] opportunities.

The above technique provides confidence intervals on
CDP at thosc ranges where detections occurred. Consider
* *
. ¥ < R, .
range Ri where R1+l < Rl Rl, and recall that the
estimated CDP for range Rz is still CDP; . First, consider
the case where A; > C; (i.e., the number of late-starters

is greater than or equal to the number of turn arounds in

23
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the interval from Ri to R;). For this case, no change is
recommended in the confidence interval on CDP. As R; moves
from R; to R, +1, there will be no change in the limits of
the confidence interval so long as Az > C;.

Secondly, consider the case where AI < CI (the turn-
arounds since the last detection outnumber the late-
starters since the last detection). Intuitively, there is
a drop in the precision of our estimate of CDP at range
RI. This drop in the precision should be expressed by
calculating a wider confidence interval on CDP, at range
RI. Further, it should be done in such a way that the
upper limit of the interval goes to X00% if the number
of opportunities, M.

i
CDP is a monotonically decreasing function of range, we

- (C; - A;), goes to zero. Since
can still use L; as the lower limit on CDPj at range Rz-
As an intermediate step in the adjustment of the

upper limit, compute an estimate of CDP, say CDP;, as
if the ith detection occurred at range R;.

We obtain

1 M. 4 My - k;‘_
) - (f Y (I11.2)
L

1:
1

cpp?*
1

]
[
]

N =i

where k; = C; - A;. The estimated number of opportunities
producing this value of CDP in i detections is N; = i/CDP;.

Of course our estimate of CDP at range’R; continues to be

24
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CDPi, but for a (conservative) upper limit we take the
upper limit of a Y% confidence interval as if we have had
i1 detections out of [N;] opportunities. Note that if

*

ki = Mi' then there are no targets available at range R;

and CDP; = 1. Hence, the upper limit on CDp; at range
R; will be 1. This technique also guarantees that the
upper limits of the confidence intervals will converge
to 1 as the range goes to 0.

Using the above technique, it may happen that the
upper limits of the intervals are not a monotonically
decreasing function of range. See Figure III.1 for a
sketch of an artificial example.

CDP N oo Locus of upper

l— % — %—X
\,ﬂ/limils.
AN
Locus of lower /’(/)\\

limits,

Figure III.l A Situation Where the Locus of the Upper
Limits of the Confidence Intervals on
CDP is not a Monotonic Function of Range

25
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Non-monotonic changes in the upper limits are possible
if large numbers of late~starters are introduced to a
relatively small number of opportunities. One may make
the locus of the upper limits monotonically decreasing as
the range increascs. This adjustment is indicated by
the symbols "—#*-*=%-" jn Figure III.1l This appears to
be a reasonabie adjustment of the upper limits since the
"true" CDP is a m~notonically decreasing function of
range.

The data for the numerical example (fictitious) appear-
ing in Table III.l is taken from the current SUBMARINE
ANALYSIS NOTEBOOK (reference (1)). Approximate 80%
céhfidenée limits on the CDP curve have been calculated
and are included in the table. Note that because of
the small number of opportunities and detections, the

intervals are quite wide. The results are presented
graphically in Figure III.2,
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IV. CONFIDENCE INTERVALS FOR PRODUCTS OF PROPORTIONS

Discussion

It is well known that several Measures of Effectiveness
(MOEs) useful in the analysis of Anti-Submarine Warfare
exercises can be written in the form

N

MOE P1P5. - Py izl p;
where P; is the probability of success of the ith component
of a system, given that the first (i-l) components have
succeeded. In statistical terms, the MOE is a measure of
the reliability of a series system (i.e., a system in
which every component must succeed in order for the system
to succeed) and is the probability that the system will
succeed on a given "trial".

In this chapter, the problem of obtaining (approximate)
confidence intervals on MOEs is considered. A brief
descriptioh of techniques due to Harris (reference (7)),
Madansky (reference (2)) and Walsh (reference (8)) is
given, with a discussion of the conditions under which
each is applicable. In addition, an in-depth review of
a modified Bayesian technique is presented, along with
some of the problems associated with its use. Tables are
given comparing the various techniques under different
conditions.

29

(1v.1)




Based on the comparative analysis, the method due

to Madansky is recommended for inclusion in the updated
SUBMARINE ANALYSIS NOTEBOOK. It appears to be most
applicable to the type of exercise data used for obtain-

ing estimates of Measures of Effectiveness for submarine
missions.

Theory

Assume Xl...,xN are statistically independent random
variables and for each i, X has a binomial distribution
with parameters ng and Py - As usual; Xi will be the
number of "successes" out of ny "trials" where the true,

but unknown, probability of success on any trial is p; -

Harris gives a brief review of prior work in this
area and extends a general technique developed by Buehler
(reference (9)) for obtaining approximate confidence
intervals whenever each X i=1l,...,N, is approximately
Poisson distributed, (i.e., roughly n; > 40 with p; < 5/ni).
Thus, P; must be "small" which restricts the use of the
technique even in the case of "large" samples.

~
Walsh succeeded in deriving a functicn of p; = Xi/ni,

i=1,...N which can be "inverted" to obtain an approximate
N

confidence interval on I Py - The function is approximately
i=1

normally disiributed whenever the numbers of trials, ni‘s,

are moderately large and the success probabilities, pi's,

are of at least moderate size (i.e., roughly, p; > 1/2,

n;p; > 10, and ng (l-pi) > 5; or Py 2 2/3, n.p, > 10, and

ni(l—pi) > 2). As before, the restrictions on p; limit

the use of the procedure.
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Madansky derives approximate confidence intervals on
N .
I p; by "inverting" the generalized likelihood ratio

i=1

test and using the well known asymptotic Chi~-square random
variable. The technique gives good results whenever the
ni's are "large" and the pi's are not close to zero (i.e.,

roughly, n; > 30 with p; > 5/ni).

The above are "relatively large sample" techniques.
Furthermore, each has restrictions on Py s i=l,...,N. In
the case when these restrictions are not met there are

no procedures, known to the authors, for obtaining
confidence intervals on MOE = g P o
i=1 %
In an attempt to provide guidance in all cases., an
investigation was made into the Bayesian confidence
intervals suggested by Springer and:Thompson (reference (10)).
Under the assumption that Py« i=l,...,N has a uniform prior
distribution on the interval from zero to one, they derived
the Bayes posterior distribution of the MOE, conditional
on the observed values ﬁi = Xi/ni’ The appropriate per-
centage points of the posterior distributi-n form the limits
of the Bayesian confidence interval on the MOE. Unfortu-
nately, the Bayesian procedure has two undesirable features.
First, the mean of the posterior distribution is

-~ N X, + 1
= I __l____..
i=1 ni + 2

(IV.2)

Lquation (IV.2) is a biased estimate of the MOE. As the
authors point out, the estimate is unbiased if the ng all
tend to infinity. However, for moderate sample sizes, n.,
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the bias can be serious if N is large and P; is close to
1. See Table IV.1l for some simple numerical examples.

Table IV.1
Correct Estimate ; Bayesian Estimate (Biased)
N ' : N
1 (X./n.) : T (X,+1)/ (n,+2)
=1 * * i=1 % =
5 4 5 i
I (%%) = ,7738 1 I (%%0 = ,6209
i=lk ER i=l
10 : 10 i
19 . - 20 —
T (55 = .5987 T (53) = .3855
i= s i=1
15 i 15
T (53) = .4633 1 (2% = .2394
i=1 1 i= .

A second probiem with the Bayesian limits is that for
small sample sizes (ni‘s) they are too narrow in at least
one case. Namely, when there is only one term in the
product, i.e., the MOE is a single proportion. For this
case, "exact" confidence intervals can be given as in
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Table IV.2. Comparison of the Bayesian limits and the
"?xact" limits on a single proportion lead us to modify
the Bayesian technique.

Table IV.2 80% Confidence Interval on a Single Proportion
When the Sample Size = 5

Number of Proportion of Bayesian Eract Confidence

Successes Successes 1 Limits Limits
X igibower Upper | Lower Upper
0 , 0.0 | .o19 | .177 |o.00 .275
1 | .2 1 -098 .495 :021 .584
2 -4 %E .209 .656 .112 .753
3 .6 | 343 | 700 | .207 . 888
4 .8 | .496 | .902 | .416 .979
5 1.0 éf .822 .981 .725 1.000

In the Bayesian spirit, assume that for each i, p; is

"

a random variable. Given p; = Xi/ni’ the limits (Li, Ji)
of an exact l-o confidence interval on p; are known (see,
for example, reference (ILl)) to satisfy

BETA(Lif xi'ni~xi+l) = 0/2 {Iv. 3)
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and

respectively. The function

2

BETA(z; B, B) = propoyy |t -t)B lat
(o]

zZ

=J[f(t; A, B)dt (Iv.5)
o

is the cumulative form of the beta distribution. Gi-~en

A

p; = Xi/ni with 0<X;<n;, define the "interval generating
function" of Py to be

BETA(pi;Xi,ni-Xi+l) if OfﬁETA(pi;Xi,ni—Xi+l)§.5

Fi(pi;Xi,ni) =< BETA(pi;Xi+1,ni-Xi) if lszTA(pi;Xi+l,ni—Xi)i.5

- ML Py<p; <P

(Iv.6)

where P and Ei satisfy BETA(pi;Xi,ni-Xi+l) = ,5 and BETA

(ﬁi;xi+l,ni-xi) = .5 recpectively.
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A sketch of the graph of F(p;3,5) appears in Figure IV.1.
When ﬁ = 3/5, confidence intervals for p may be read directly
from the graph. For example, with F(p;3,5) = .05 and .95
we obtain p = .189 and .924 respectively. The interval
(.189, .924) is a 90% confidence interval on p.

If Xi = 0, define

F,(p;:0,n;) = BETA(p;;1,n;); 0<p;<l. (Iv.7)

If X. = n define

i i’

F;(p;ing,n;) = BETA(p;in;,1); 0<pi<i. (IV.8)

Sketches of the graphs of F(p;0,5) and F(p;5,5) appear

in Figure IV.2. In the case Xi = 0 the lower limit, Lis of
the (l1-o) confidence interval on P is U and the upper limit
satisfies Fi(Ui;O,ni) = 1-a. For example, from Figure IV.2
we see that a 90% confidence interval on p when X = 0,
n=51ds (C, .369). Similarly, if Xi = n,, then the upper
limit, Ui is taken to be 1 and the lower limit, Li’ satisfies
Fi(pi;ni,ni) = o. From Figure IV.2, a 90% confidence inter-
val on p is (.631, 1) when X = 5, n = 5.

By this time it is obvicus that we are requirirg the
percentage points of the interval generating function,
Fi(pi;xi,ni), to be the limits of an exact confidence inter-

val on p.
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function F(p;3,5) giving confidence

irtervals on p when $=3/5.

Figure IV.l Graph of the interval generating
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Also, the function Fi(pi;xi,ni) satisfies necessary and
sufficient conditions (see, for =2xample reference (12)) to
pe a cumulative probability distribution function. This
motivates the following definition:

Definition 4.1. Conditional on the observed value

»~

p; = Xi/ni’ the modified Bayesian

"posterior" cumulative probability
distribution of P is given by
Fi(pi;Xi,ni) for i =1,2,...,N.

We desire the posterior cumulative probability dis-
N N,
tribution {cpd) of MOE = N p. conditional on 1 p,.
i=1 * i=1
The posterior cpd is not available in closed fcrm. How-

ever, it can be simulated easily on a high speed computer.
The modified Bayesian confidence intervals will then be
given by the appropriate percentage points in the simulated
posterior cpd of MOE.

To simurate the posterior cpd of R, first generate
uniformly distributcd rardom numbers, I between 0 and 1
and solve the equations

ri = Fi(Pi;xi,ni); i=l,o-o’N, (IVog)

for p;. Call the solutions p;; i=1,...,N. This gives
random observations from the posterior distributions of

N
p., (i=1,...,N). Form the product R* = 1

*
p' L d
1 i=1 h i
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Definition 4.2. The product R* = Ii p; is a random
‘ i=1
observation from the posterior cpd

of the MOE.

Continuing in the above manner, generate M observations
from the posterior cpd of the MOE, and denote them by
R{, RE,...,R&. Let PCj denote the jth percentile of the
R;'s, i.e., PCy is the value such that 3% of the R;'s are
less than or equal to PCj. Clearly, if M is large enough,
the limits of the 80% modified Bayesian confidence interval
90" The
limits of the 90% modified Bayesian confidence interval on

on R will be given approximately by PCyq and PC
R will be given approximately by PCg and PCyc» etc.

A program was written in GE MK II Time-Sharing Fortran
for obtaining the modified Bayesian confidence intervals
and is available upon request.

The accuracy of the program yielding the modified
Bayesian intervals depends on M, the number of simulations,
and the accuracy of the internal computer function used to
solve the incomplete beta function. The accuracy of the
internal incomplete beta function available on our computer
is not too good. In extreme cases, agreement with tabled
values is to no more than 2 or 3 digits. This, coupled
with the numerical technijue used to fit the curve
F.(p;iX;,m;) by a series of straight lines, did not yield
the ? or 3 digit accuracy hoped for. however, so long as
M> 40/a, the end points of the l-o confidence interval on
a single proportion (N=1) were within +.0l of the exact
confidence intervals appearing in reference (ll). See,
for example, the figures ir Table IV.3.
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Table IV.3

Confidence Intervals on p when X=1, n=5

Confidence | Exact Confidence Modified Bayesian Intervals
(1-a) Limits
=100 M=200 M=400 =1000
80% (.02,.58) (.02,.57) 4 (.02,.56) | (.02,.57) | (.02,.58)
90% (.01,.66) (.010,.64)} (.01,.66) | (.01,.67) | (.01,.66)
95% (.005,.72) (.004,.74)] (.003,.75)| (.007,.73)| (.006,.,72)

For the case ¥>2, all procedures known to the authors
for obtaining ordinary confidence intervals on the MOE
depend on asymptotic distribution theory and hence are
only approximate. For this reason, comparisons with the
modified Bayesian intervals are meaningful only in the
With the exception of the last
column giving the modified Bayesian limits, the figures
The
modified Bayesian limits are seen to be close to the

case of "large" n,'s.
in Table IV.4 appear in Harris (reference (7)).
approximate ordinary limits and in fact are between

Buehler's limit and Harris' limit for all but one set of
the values of Xi and ni used.
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If the ni's are large and the pi's are not close to

zero then Madansky's likelihood ratio method is satis-

factory.

Table IV.5 contains one such example.

Again,

there is good agreement between the Modified Bayesian

intervals and the ordinary intervals.

Approximate Confidence Limits for MCE =

Table IV.5

N

P

i=1

I P; s Where

= Probability of Success at ith Component

1

Confidence

Level

4
i
i=

1

Xi/ni = ,156

34
27

23 =

21

Madansky's
Likelihood Ratio

.116,
.106,
.098,

.203
.218
.231

42

87
33
45
22

Modified

Bayesian
(M=100)

.097, .209

.086, .218
.043, .260

Modified
Bayesian
11=400)

101, .204
.083, .223

044, .234

|
i




Unfortunately, numerical computations indicate that
the modified Bayesian procedure is also severely biased

if the pi's are close to one and the number of terms in

the product, N, is large. Thus,; it is recommended that
N

the product 1 (XA+1)/(ni+2), be "close" to the product,
i=> v

N

n (Xi/ni), before the modified Bayesian procedure is

i=1

applied.

O m—i
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V. A NOTE ON THE EFFECT OF "LATE STARTERS" ON THE
ESTIMATE OF CUMULATIVE DETECTION PROBABILITY

Discussion

In conducting the research for estimating confidence
intervals on cumulative detection probability (CDP) as a
function of range (see Chapter III of this paper), it
was discovered that the inclusion of "late starters" in
the data base may produce a biased estimate of the desired
CDP. This bias is due to the fact that, in some cases,
the "late starters" have their own CDP curve which may be
significantly different from the CDP curve for "non-late
starters". The magnitude of the bias of an estimate of
CDP calculated from exercise data may be unknown.

Theoxry

Let £(R) denote the cumulative detection probability
(CDP) at range R of targets whose starting ranges are
beyond the (reasonable) limits of detection. It is
assumed that we desire to estimate the function £(R) for
all R > 0. Let fg(R) denoce the CDP at range R of targets
whose starting range is S, where S is less than the limits
of detection. For ease of presentation assume there are
two groups of targets: <£first, N targets beyond the limits
of detection and then N; targets start at range Sl' See
Figure V.1.
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Figure V.1

Consider the range "bin" (R¥, Sl). Using the standard
technique in reference (1), the value of (R*) can be
estimated by £ (R¥). The expected value of the estimate
is

N(l-f(Sl)) N(1-£(R*)) + Nl (1-£ (R*)

S

E (£(R%)) = 1 - 1 (v 1)
N N(l—f(Sl)) + Ny
The right hand side of‘equation V.1l is not equal to £ (R*)
for all possible values of the function fSl (R*}, i.e., the
estimation procedure is biased at R* unless the function
£5; (R) is such that E(£(R*)) = £(R%). Setting the right
hand side of equation V.l equal to £ (R¥*) and solving for
fgy (R*), we find that
fg, (R¥) = (£ (R%) - £(5)))/(1-£(57)). (V.2)
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Equation V.2 is a necessary condition in oxder for the
standard estimate, %(R*), to be uEbiased, If fgq (R*)
< (£(R¥*) - f(Sl))/(l-f(Sl)) then £(R*) is too small (on
average) and if £g; (R*) > (£(R*) - £(5;))/(1-£(5;))
then £(R*) is too large (on the average). The abovz
remarks point out the fact that, if "late starters"
have their own CDP curves then combining data from
"late starters" with "non-late starters" to estimate
the latter's CDP curve may produce biased results. The
magnitude of the bias in a complicated exercise will

be unknown.

To illustrate the above, two ertificial but intuitive
numerical examples follow. Assume that at range 6 miles
the true CDP is 25% and at range 5 miles the true CDP is
30%. Assume that for late starters at range 6 miles, the
probability is 25% that a target will be immediately
detected. After the imwediate detections, assume the
CDP of the late starters follows the "true" CDP. See
Figure V.2,

I
True CDP = {(R)
\!" i -t_ T <eeses CDP of lale storfers = fg(R)

35 D ' -~ | = ~= Expected estimate of

true COP= f(R)

30— — — — — — —

e T

Netrsee oo e

MILES

Figure V.2
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In an exerxcise, assume there are 20 targets whose
starting ranges are beyond the limits of detection and
20 targets which start at 6 miles. At a range "slightly"
more thau 6 miles, say 6+, the standard formulas will
yvield an estimate of CDP whose expected value is

E(f(67) = 1 - (15/20) = .25.

In this example, the estimation technique is unbiased for
ranges greater than 6 miles. At 6 miles, 5 of the late
starters will be detected immediately. In other words,
we expect 15 + 15 = 30 nondetections out of 15 + 20 = 35
opportunities. The updated estimate of CDP will have the
expected value

]

E(£(6)) = 1 - (15/20) (30/35)

.357.

1l

Thus, at range 6 miles, the estimation technique is biased
by 10.7%. The "true" CDP is 25%, but on the average, the
estimate of the true CDP is 35.7%. In the range "bin" from

6 to 5 miles, we expect (.05) (20) = 1 detection from each
group of targets. In other words, we expect 28 nondetections
out of 30 opportunities. The updated estimate of CDP will
have the expected value

E(£(5)) = 1 - (.643) (28/30)

=1-06
= .4.
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The procedure is biased by 10% at range 5 miles.

For the second example, assume that the probability is
1.0 that a target will be detected within one mile of starting
range if its starting range is less than 8 miles. Further,
assume that the probability of detection is uniform over this
unit interval, and that there is no chance of detection oI
targets at a range greater than 8 miles., CDP curves for 3

starting ranges are sketched in Figure V.Z2.

6f7(R)(f7-9(R)

1.0

"true” CDP = f (R)

CDP

Figure V.3
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Consider an exercise in which we have 10 targets with
starting range greate. than 8 miles, 5 late starters at
7.5 miles and 5 late starters at 7 miles. The expected
CDP curve, as computed by the formulas in (reference (1)),
appears in Figure V.4, For ranges less than 7.5 miles,
the estimates are too small (on the average).

1.O
.875 | —_— —
a
o) _ e
o 5
Expected estimale
; of CDP.
\
oy
8
Figure V.4
Recommendation

An obvious solution to this potential bias due to "late-
starters" is to eliminate all of them from the data base for
calculating cumulative detection pxrnbability. However, this
approach is not desirable since a significantly large portion
of the data may consist of "late-starters", in which case the
sample size would be drastically reduced. Thus, the analyst
must use his discretion in eliminating some "late-starters"
and retaining othecrs.
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; The following guidelines for eliminating "late-starters"
are recommended at this time:

1) All "late~starters" that are detected immediately (or
just about immediately) after becoming a detection
opportunity should be removed from the data base,
since it is probable that they would have been detected
at a longer range had they been opportunities at a

3 longer range.

2) All "late-starters" that have a very short start range
should be eliminsted. A start range is considered to
be very short if it is less than a large proportion of

the detection ranges. (e.g., start range less than
50% of the detection ranges.)

the distribution theoxry of cumulative detection probability

i Additional research relative to the "late-starter" effect on
; may result in the formulation of different rules.

[ ey
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